
Algorithms for Quad-Double Precision Floating Point Arithmetic�

Yozo Hida
Computer Science Division

University of California
Berkeley, CA 94720

yozo@cs.berkeley.edu

Xiaoye S. Li David H. Bailey
NERSC

Lawrence Berkeley National Laboratory
1 Cycloton Rd, Berkeley, CA 94720

fxsli, dhbaileyg@lbl.gov

Abstract

A quad-double number is an unevaluated sum of four
IEEE double precision numbers, capable of representing at
least 212 bits of significand. We present the algorithms for
various arithmetic operations (including the four basic op-
erations and various algebraic and transcendental opera-
tions) on quad-double numbers. The performance of the
algorithms, implemented in C++, is also presented.

1. Introduction

Multiprecision computation has a variety of applica-
tions, including pure mathematics, physics, cryptography
and computational geometry. For example, high precision
computations are used in mathematical research to recog-
nize numerical constants and to numerically discover previ-
ously unknown mathematical relationships [3]. High pre-
cision arithmetic is used in computational physics to ex-
plore phenomena that otherwise would be lost in numerical
“noise” [4]. It is used in computational geometry to resolve
uncertainties in polygons [12].

Many arbitrary precision algorithms and libraries have
been developed using only the fixed precision arithmetic.
They can be divided into two groups based on the way
precision numbers are represented. Some libraries store
numbers in amultiple-digitformat, with a sequence of dig-
its coupled with a single exponent, such as the symbolic
computation package Mathematica, Bailey’s MPFUN [2],
Brent’s MP [5] and GNU MP [8]. An alternative approach
is to store numbers in amultiple-componentformat, where
a number is expressed as unevaluated sums of ordinary
floating-point words, each with its own significand and ex-
ponent. Examples of this format include [7, 11, 12]. The
multiple-digit approach can represent a much larger range

�This research was supported by the Director, Office of Science, Di-
vision of Mathematical, Information, and Computational Sciences of the
U.S. Department of Energy under contract number DE-AC03-76SF00098.

of numbers, whereas the multiple-component approach has
the advantage in speed.

We note that many applications would get full benefit
from using merely a small multiple of (such as twice or
quadruple) the working precision, without the need for arbi-
trary precision. The algorithms for this kind of “fixed” pre-
cision can be made significantly faster than those for arbi-
trary precision. Bailey [1] and Briggs [6] have developed al-
gorithms and software for “double-double” precision, twice
the double precision. They used the multiple-component
format, where a double-double number is represented as an
unevaluated sum of a leading double and a trailing double.

In this paper, we present some algorithms for “quad-
double” numbers, in other words, numbers with four times
the double precision. We use the multiple-component for-
mat to take advantage of speed. A quad-double number
is an unevaluated sum of four IEEE doubles. The quad-
double number(a

0

; a

1

; a

2

; a

3

) represents the exact sum
a = a

0

+a

1

+a

2

+a

3

, wherea
0

is the most significant com-
ponent. We have designed and implemented algorithms for
basic arithmetic operations, as well as some algebraic and
transcendental functions. We have performed extensive cor-
rectness tests and compared the results with arbitrary preci-
sion package MPFUN. See [9] for more details about the
software.

The rest of the paper is organized as follows. Section 2
describes some basic properties of IEEE floating point arith-
metic and the building blocks used in the quad-double algo-
rithms. In Section 3 we present the quad-double algorithms
for basic operations, including renormalization, addition,
multiplication and division. Section 4 presents the timing
results of the C++ implementation on various architectures.
Section 5 gives a summary and discusses future work.

2. Preliminaries

In this section, we present some basic properties and al-
gorithms of IEEE floating point arithmetic used in quad-
double arithmetic. These results are based on Dekker [7],

Knuth [10], Priest [11], Shewchuk [12], and others.
All basic arithmetics are assumed to be performed in

IEEE double format, with round-to-even rounding on ties.
For any binary operator� 2 f+;�;�; =g, we use
(a � b) =
a � b to denote the floating point result ofa � b, and define
err(a�b) asa�b =
(a�b)+err(a�b). Throughout this paper,
" = 2

�53 is the machine epsilon for IEEE double precision
numbers, and"

qd

= 2

�211 is the precision one expects for
quad-double numbers.

Lemma 1. [12, p. 310]Let a and b be twop-bit floating
point numbers such thatjaj � jbj. Thenjerr(a + b)j �

jbj � jaj.

Lemma 2. [12, p. 311]Let a and b be twop-bit floating
point numbers. Thenerr(a + b) = (a + b) �
(a + b) is
representable as ap-bit floating point number.

Algorithm 3. [12, p. 312] The following algorithm com-
putess =
(a+ b) ande = err(a+ b), assumingjaj � jbj.

QUICK-TWO-SUM(a; b)
1. s a� b

2. e b	 (s 	 a)

3. return (s; e)

Algorithm 4. [12, p. 314] The following algorithm com-
putess =
(a+ b) ande = err(a+ b). This algorithm uses
three more floating point operations instead of a branch.

TWO-SUM(a; b)
1. s a� b

2. v s	 a

3. e (a	 (s 	 v)) � (b	 v)

4. return (s; e)

Algorithm 5. [12, p. 325] The following algorithm splits
a 53-bit IEEE double precision floating point number into
a

hi

anda
lo

, each with 26 bits of significand, such thata =

a

hi

+ a

lo

. a

hi

will contain the first26 bits, whilea
lo

will
contain the lower26 bits.

SPLIT(a)
1. t (2

27

+ 1)
 a

2. a
hi

 t	 (t	 a)

3. a
lo

 a	 a

hi

4. return (a

hi

; a

lo

)

Algorithm 6. [12, p. 326] The following algorithm com-
putesp =
(a� b) ande = err(a � b).

TWO-PROD(a; b)
1. p a
 b

2. (a
hi

; a

lo

) SPLIT(a)
3. (b

hi

; b

lo

) SPLIT(b)
4. e ((a

hi

b

hi

	p)�a

hi

b

lo

�a

lo

b

hi

)�a

lo

b

lo

5. return (p; e)

Some machines have a fused multiply-add instruction
(FMA) that can evaluate expression such asa � b�
 with

a

b

s

e

Figure 1. QUICK-TWO-SUM (3 FLOPS)

a

b

s

e

Figure 2. TWO-SUM (6 FLOPS)

a

b e

p

Figure 3. TWO-PROD (17 FLOPS) and TWO-
PROD-FMA (3 FLOPS)

b

s

a

b

a

p

Figure 4. Normal IEEE double precision sum
and product

a single rounding error. We can take advantage of this in-
struction to compute the exact product of two floating point
numbers much faster. These machines include IBM Power
series (including the PowerPC), on which this simplification
is tested.

Algorithm 7. The following algorithm computesp =

(a � b) and e = err(a � b) on a machine with a FMA
instruction. Note that some compilers emit FMA instruc-
tions fora � b+
 but not fora � b�
; in this case, some
sign adjustments must be made.

TWO-PROD-FMA(a; b)
1. p a
 b

2. e
(a� b� p)

3. return (p; e)

The algorithms presented are the basic building blocks
of quad-double arithmetic, and are represented in Figures 1,
2, and 3. In the caption of each figure, we give the count of
normal floating point operations (FLOPS) associated with
each building block. Symbols for normal double precision
sum and product are in Figure 4.

3. Basic Operations

In this section, we present our algorithms for basic arith-
metic operations. The other algorithms for algebraic and
transcendental functions are described in [9].

Since each component of a quad-double number is a
IEEE double, the exponent range is limited to that of a dou-
ble precision number. This implies that the arithmetic oper-
ations on quad-double numbers near underflow may result
in a loss of precision.

3.1. Renormalization

A quad-double number is an unevaluated sum of
four IEEE double numbers. The quad-double number
(a

0

; a

1

; a

2

; a

3

) represents the exact suma = a

0

+ a

1

+

a

2

+ a

3

. Note that for any given representable number
x, there can be many representations as an unevaluated
sum of four doubles. Hence we require that the quadruple
(a

0

; a

1

; a

2

; a

3

) to satisfy

ja

i+1

j �

1

2

ulp(a

i

); for i = 0; 1; 2

with equality occurring only ifa
i

= 0 or the last bit ofa
i

is 0 (that is, round-to-even is used in case of ties). Note that
the first doublea

0

is a double-precision approximation to
the quad-double numbera, accurate to almost half an ulp.

Lemma 8. For any quad-double numbera =

(a

0

; a

1

; a

2

; a

3

), the normalized representation is unique.

Most of the algorithms described here produce an expan-
sion that is not of canonical form — often having overlap-
ping bits. Therefore, a five-term expansion is produced, and
then renormalized to four components. Note, two floating
point numbersx andy are overlapping if the least signifi-
cant bit ofx is smaller than the most significant bit ofy.

Algorithm 9. This renormalization procedure is a variant
of Priest’s renormalization method [11, p. 116]. The input
is a five-term expansion with limited overlapping bits, with
a

0

being the most significant component.

RENORMALIZE(a
0

; a

1

; a

2

; a

3

; a

4

)
1. (s; t

4

) QUICK-TWO-SUM(a
3

; a

4

)
2. (s; t

3

) QUICK-TWO-SUM(a
2

; s)
3. (s; t

2

) QUICK-TWO-SUM(a
1

; s)
4. (t

0

; t

1

) QUICK-TWO-SUM(a
0

; s)
5. s t

0

6. k 0

7. for1
i 1; 2; 3; 4

8. (s; e) QUICK-TWO-SUM(s; t
i

)
9. if e 6= 0

10. b

k

 s

11. s e

12. k k + 1

13. end if
14. end for
15. return (b

0

; b

1

; b

2

; b

3

)

Necessary conditions for this renormalization algorithm
to work correctly are, unfortunately, not known. Priest
proves that if the input expansion does not overlap by more
than 51 bits, then the algorithm works correctly. However,
this condition is by no means necessary; that the renormal-
ization algorithm (Algorithm9) works on all the expansions
produced by the algorithms below remains to be shown.

3.2. Addition

Quad-Double + Double. The addition of a double pre-
cision number to a quad-double number is similar to
Shewchuk’s GROW-EXPANSION [12, p. 316], but the dou-
ble precision numberb is added to a quad-double num-
ber a from most significant component first (rather than
from least significant). This produces a five-term expan-
sion which is the exact result, which is then renormalized.
See Figure 5.

Since the exact result is computed, then normalized to
four components, this addition is accurate to at least the first
212 bits of the result.

Quad-Double + Quad-Double. We have implemented
two algorithms for addition. The first one is faster, but
only satisfies the weaker (Cray-style) error bounda � b =

1In the implementation, this loop is unrolled to severalif statements.

b

Renormalization

a
0

a
1

a
2

a
3

s
3

s
21

s
0

s

Figure 5. Quad-Double + Double

(1 + Æ

1

)a + (1 + Æ

2

)b where the magnitude ofÆ
1

andÆ
2

is
bounded by"

qd

= 2

�211.
Figure 6 best describes the first addition algorithmof two

quad-double numbers. In the diagram, there are three large
boxes with three inputs to them. These are various THREE-
SUM boxes, and their internals are shown in Figure 7.

Now for a few more lemmas.

Lemma 10. Let a and b be two double precision floating
point numbers. LetM = max(jaj; jbj). Thenj
(a + b)j �

2M , and consequently,jerr(a + b)j �

1

2

ulp(2M) � 2"M .

Lemma 11. Let x; y; andz be inputs toTHREE-SUM. Let
u; v; w; r

0

; r

1

; and r

2

be as indicated in Figure 7. Let
M = max(jxj; jyj; jzj). Thenjr

0

j � 4M , jr
1

j � 8"M ,
andjr

2

j � 8"

2

M .

Proof. This follows from applying Lemma 10 to each of the
three TWO-SUM boxes. First TWO-SUM givesjuj � 2M

and jvj � 2"M . Next TWO-SUM (addingu andz) gives
jr

0

j � 4M and jwj � 4"M . Finally, the last TWO-SUM

gives the desired result.

Note that the two other THREE-SUMs shown are simpli-
fication of the first THREE-SUM, where it only computes
one or two components, instead of three; thus the same
bounds apply.

The above bound is not at all tight;jr
0

j is bounded closer
to3M (or evenjxj+jyj+jzj), and this makes the bounds for
r

1

andr
2

correspondingly smaller. However, this suffices
for the following lemma.

Lemma 12. The five-term expansion before the renormal-
ization step in the quad-double addition algorithm shown in
Figure 6 errs from the true result by less than"

qd

M , where
M = max(jaj; jbj).

Proof. This can be shown by judiciously applying Lemmas
10 and 11 to all the TWO-SUMs and THREE-SUMs in Fig-
ure 6. See [9] for a detailed proof.

Renormalization

a
3

a
2

a
1

a

b
0

b
1

b
2

b3

0

s
0

s
1

s
2

s
3

Figure 6. Quad-Double + Quad-Double

r
1

r
2

y

x

z

u

v

w

r
0

r
0

r
1

x

y

z

r
0

x

y

z

Figure 7. THREE-SUMs

Assuming that the renormalization step works (this re-
mains to be proven), we can then obtain the error bound

(a+ b) = (1 + Æ

1

)a+ (1 + Æ

2

)b; with jÆ
1

j; jÆ

2

j � "

qd

:

Note that the above algorithm for addition is particularly
suited to modern processors with instruction level paral-
lelism, since the first four TWO-SUMs can be evaluated in
parallel. Lack of branches before the renormalization step
also helps to keep the pipelines full. The above algorithm
does not satisfy the IEEE-style error bound

(a+ b) = (1 + Æ)(a + b); with jÆj � 2"

qd

or so.

To see this, leta = (u; v; w; x) and b = (�u;�v; y; z),
where none ofw; x; y; z overlaps andjwj > jxj > jyj > jzj.
Then the above algorithm produces
 = (w; x; y; 0) instead
of
 = (w; x; y; z) required by the stricter bound.

The second algorithm (14), due to J. Shewchuk and S.
Boldo, computes the first four components of theresultcor-
rectly. Thus it satisfies stricter error bound

(a+ b) = (1 + Æ)(a + b); with jÆj � 2"

qd

or so.

However, it has a corresponding speed penalty; it runs sig-
nificantly slower (a factor of2–3:5 slower).

The algorithm is similar to Shewchuk’s FAST-
EXPANSION-SUM [12, p. 320], where it merge-sorts
the two expansions. To prevent components with only
a few significant bits to be produced, a double-length
accumulator is used so that a component is output only if
the inputs gets small enough to not affect it.

Algorithm 13. Assuming thatu; v is a two-term expansion,
the following algorithm computes the sum(u; v) + x, and
outputs the significant components if the remaining com-
ponents contain more than one double worth of significand.
u andv are modified to represent the other two components
in the sum.

DOUBLE-ACCUMULATE(u; v; x)
1. (s; v) TWO-SUM(v; x)
2. (s; u) TWO-SUM(u; s)
3. if u = 0

4. u s; s 0

5. end if
6. if v = 0

7. v u; u s; s 0

8. end if
9. return (s; u; v)

The accurate addition scheme is as follows.

Algorithm 14. This algorithm computes the sum of two
quad-double numbersa = (a

0

; a

1

; a

2

; a

3

) and b =

(b

0

; b

1

; b

2

; b

3

). It merge-sorts the eight doubles, and per-
forms DOUBLE-ACCUMULATE until four components are
obtained.

QD-ADD-ACCURATE(a; b)
1. (x

0

; x

1

; : : : ; x

7

)

MERGE-SORT(a
0

; a

1

; a

2

; a

3

; b

0

; b

1

; b

2

; b

3

)

2. u 0; v 0; k 0; i 0

3. while k < 4 and i < 8 do
4. (s; u; v) DOUBLE-ACCUMULATE(u; v; x

i

)

5. if s 6= 0

6.

k

 s; k k + 1

7. end if
8. i i+ 1

9. end while
10. if k < 2 then

k+1

 v

11. if k < 3 then

k

 u

12. return RENORMALIZE(

0

;

1

;

2

;

3

)

3.3 Subtraction

Subtractiona � b is implemented as the additiona +

(�b), so it has the same algorithm and properties as that of
addition. To negate a quad-double number, we can negate
each component. On a modern C++ compiler with inlining,
the overhead is noticeable but not prohibitive (say5% or
so).

3.4. Multiplication

Multiplication is done in a straightforward manner, mul-
tiplying term by term and accumulating. Unlike addition,
there are no possibilities of massive cancellation in multi-
plication, so the following algorithms satisfy the IEEE style
error bounda
 b = (1 + Æ)(a� b), with jÆj � "

qd

.

Renormalization

a
0 1

a a
2

a
3

ss
0

s
2

s
3

b

1

Figure 8. Quad-Double � Double

Quad-Double � Double. Let a = (a

0

; a

1

; a

2

; a

3

) be a
quad-double number, and letb be a double precision num-
ber. Then the product is the sum of four terms,a

0

b+ a

1

b+

a

2

b + a

3

b. Note thatja
3

j � "

3

ja

0

j, so ja
3

bj � "

3

ja

0

bj,
and thus only the first 53 bits of the producta

3

b need to be
computed. The first three terms are computed exactly using
TWO-PROD (or TWO-PROD-FMA). All the terms are then
accumulated in a similar fashion as addition. See Figure 8.

Quad-Double � Quad-Double. Multiplication of two
quad-doublenumbers becomes a bit complicated, but never-
theless follows the same idea. Leta = (a

0

; a

1

; a

2

; a

3

) and
b = (b

0

; b

1

; b

2

; b

3

) be two quad-double numbers. Assume
(without loss of generality) thata and b are order 1. Af-
ter multiplication, we need to accumulate13 terms of order
O("

4

) or lower.

a� b � a

0

b

0

O(1) term
+a

0

b

1

+ a

1

b

0

O(") terms
+a

0

b

2

+ a

1

b

1

+ a

2

b

0

O("

2

) terms
+a

0

b

3

+ a

1

b

2

+ a

2

b

1

+ a

3

b

0

O("

3

) terms
+a

1

b

3

+ a

2

b

2

+ a

3

b

1

O("

4

) terms

Note that smaller order terms (such asa

2

b

3

, which is
O("

5

)) are not even computed, since they are not needed to
get the first 212 bits. TheO("4) terms are computed using
normal double precision arithmetic, as only their first few
bits are needed.

Renormalization

(O)1 term

O terms

O ε2 terms

O ε3 terms

O ε4 terms

O ε3

O ε4

O ε3

O ε2

O ε4

s
3

s
21

ss
0

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

ε

Figure 9. Quad-Double � Quad-Double accu-
mulation phase

For i + j � 3, let (p
ij

; q

ij

) =TWO-PROD(a
i

, b
j

). Then
p

ij

= O("

i+j

) andq
ij

= O("

i+j+1

). Now there are one
term (p

00

) of orderO(1), three (p
01

, p
10

, q
00

) of orderO("),
five (p

02

, p
11

, p
20

, q
01

, q
10

) of orderO("2), seven of order
O("

3

), and seven of orderO("4). Now we can start ac-
cumulating all the terms by their order, starting withO(")
terms (see Figure 9).

In the diagram, there are four different summation boxes.
The first (topmost) one is THREE-SUM, same as the one
in addition. The next three are, respectively, SIX -THREE-
SUM (sums six doubles and outputs the first three compo-
nents), NINE-TWO-SUM (sums nine doubles and outputs
the first two components), and NINE-ONE-SUM (just adds
nine doubles using normal arithmetic).

SIX -THREE-SUM computes the sum of six doubles to
three double worth of accuracy (i.e., to relative error of
O("

3

)). This is done by dividing the inputs into two groups
of three, and performing THREE-SUM on each group. Then
the two sums are added together, in a manner similar to
quad-double addition. See Figure 10.

Figure 10. SIX -THREE-SUM

NINE-TWO-SUM computes the sum of nine doubles to
double-double accuracy. This is done by pairing the in-
puts to create four double-double numbers and a single
double precision number, and performing addition of two
double-double numbers recursively until one arrives at a
double-double output. The double-double addition (the
large square box in the diagram) is the same as David Bai-
ley’s algorithm [1]. See Figure 11.

If one wishes to trade a few bits of accuracy for speed,
we don’t even need to compute theO("4) terms; they can

Figure 11. NINE-TWO-SUM

affect the first 212 bits only by carries during accumulation.
In this case, we can compute theO("3) terms using normal
double precision arithmetic, thereby speeding up multipli-
cation considerably.

Squaring a quad-double number can be done signifi-
cantly faster since the number of terms that needs to be ac-
cumulated can be reduced due to symmetry.

3.5. Division

Division is done by the familiar long division algo-
rithm. Let a = (a

0

; a

1

; a

2

; a

3

) andb = (b

0

; b

1

; b

2

; b

3

) be
quad-double numbers. We can first compute an approxi-
mate quotientq

0

= a

0

=b

0

. We then compute the remain-
der r = a � q

0

� b, and compute the correction term
q

1

= r

0

=b

0

. We can continue this process to obtain five
terms,q

0

; q

1

; q

2

; q

3

, andq
4

. (only four are needed if we
can afford to sacrifice a few bits of accuracy).

Note that at each step, full quad-double multiplication
and subtraction must be done since most of the bits will be
canceled when computingq

3

andq
4

. The five-term (or four-
term) expansion is then renormalized to obtain the quad-
double quotient.

4. Performance and Application

We have implemented the above quad-double algorithms
in ANSI C++. In this section, we demonstrate the perfor-
mance of the quad-double library.

Table 4 shows the measurements of various kernel op-
erations on quad-double numbers on a variety of machines.
The machines, operating systems, compilers and optimiza-
tions we used are listed below:

Operation Pentium II UltraSparc PowerPC Power3

Quad-double
add 0.583 0.580 0.868 0.710
accurate add 1.280 2.464 2.468 1.551
mul 1.965 1.153 1.744 1.131
sloppy mul 1.016 0.860 1.177 0.875
div 5.267 6.440 8.210 6.699
sloppy div 4.080 4.163 6.200 4.979
sqrt 23.646 15.003 21.415 16.174
MPFUN
add 5.729 5.362 — 4.651
mul 7.624 7.630 — 5.837
div 10.102 10.164 — 9.180

Table 1. Performance of some Quad-Double
algorithms on several machines. All mea-
surements are in microseconds. We include
the performance of MPFUN [2] as a compari-
son. Note, we do not have the MPFUN mea-
surements on the PowerPC, because we do
not have a Fortran-90 compiler.

� Intel Pentium II, 400 MHz, Linux 2.2.16, g++ 2.95.2
compiler, with-O3 -funroll-loops
-finline-functions -mcpu=i686
-march=i686

� Sun UltraSparc 333 MHz, SunOS 5.7, Sun CC 5.0
compiler, with-xO5 -native

� PowerPC 750 (Apple G3), 266 MHz, Linux 2.2.15,
g++ 2.95.2 compiler, with-O3 -funroll-loops
-finline-functions

� IBM RS/6000 Power3, 200 MHz, AIX 3.4, IBM xlC
compiler, with-O3 -qarch=pwr3
-qtune=pwr3 -qstrict

Our quad-double library was successfully used in a par-
allel vortex roll-up simulation [4], which uses various tran-
scendental functions as well as basic operations. On the
NERSC IBM SP, using 256 Power3 processors, the quad-
double version runs about four times as fast as the multi-
precision (MPFUN) version, and delivers almost identical
results.

5. Summary and Future Work

We presented the algorithms and performance of various
operations on quad-double precision numbers. The algo-
rithms assume that a quad-double number is represented as
an unevaluated sum of four IEEE double precision numbers.
Note that the simpler approach of reusing double-double
arithmetic recursively to perform arithmetic on quad-double
numbers does not work, as the double-doublealgorithms re-
quire IEEE behaviour on the base arithmetic type. Double-
double numbers are not analogue of a IEEE-style ”quadru-

ple” numbers, as the two differs significantly in their be-
haviour and the numbers they can represent. As an exam-
ple,1:0+2

�1000 is not representable in IEEE style quadru-
ple precision floating point number but is a perfectly valid
double-double number(1:0; 2�1000).

Another approach is to use generic algorithms that op-
erate on two multicomponent numbers and use them recur-
sively to define quad-double arithmetic. For example, we
can take Shewchuk’s multiprecision library and modify it
to throw away unnecessary computations. This approach,
however, does not allow for special optimizations that as-
sumes the number of component is limited to 4. Our algo-
rithms perform significantly better primarily for this reason,
at the cost of generality and unproven correctness. However
for numbers with larger number of components, the benefit
of special optimizations diminish, and adaptation of multi-
precision arithmetic is probably a better approach.

Our algorithms are implemented in a C++ library, tak-
ing full advantage of operator/function overloading and
user-defined data structures. Our quad-double library also
contains miscellaneous supporting routines, including in-
put/output, comparisons, and random number generation.
The complete package and the details about its usage, test-
ing and C/Fortran interfaces can be found in [9].

We have yet to provide the full correctness proof for the
basic routines. The correctness of these routines rely on
the fact that renormalization step works; Priest proves that
it does work if the input does not overlap by 51 bits and
no three components overlap at a single bit. Whether such
overlap can occur in any of these algorithm needs to be
proved.

There are improvements due in the remainder operator,
which computesa � round(a=b) � b, given quad-double
numbersa and b. Currently, the library does the naı̈ve
method of just divide, round, multiply, and subtract. This
leads to loss of accuracy whena is large compared tob.
Since this routine is used in argument reduction for expo-
nentials, logarithms and trigonometrics, a fix is needed.

A natural extension of this work is to extend the preci-
sion beyond quad-double. Algorithms for quad-double ad-
ditions and multiplication can be extended to higher pre-
cisions, however, with more components, asymptotically
faster algorithm by S. Boldo and J. Shewchuk may be
preferable (i.e. Algorithm 14). One limitation with these
higher precision expansions is the limited exponent range
– same as that of double. Hence the maximum precision is
about 2000 bits (39 components), and this occurs only if the
first component is near overflow and the last near underflow.

Acknowledgments

We thank Jonathan Shewchuk, Sylvie Boldo, and James
Demmel for constructive discussions. The accurate version

of addition algorithm is due to S. Boldo and J. Shewchuk.
Problems with remainder were pointed out by J. Demmel.

References

[1] D. H. Bailey. A fortran-90 double-double library. Available
at http://www.nersc.gov/˜dhbailey/mpdist/mpdist.html.

[2] D. H. Bailey. A fortran-90 based multiprecision system.
ACM Transactions on Mathematical Software, 21(4):379–
387, 1995. Available at http://www.nersc.gov/˜dhbailey
/mpdist/mpdist.html.

[3] D. H. Bailey. Integer relation detection.Computing in Sci-
ence and Engineering, pages 24–28, Jan-Feb 2000.

[4] D. H. Bailey, R. Krasny, and R. Pelz. Multiple precision,
multiple processor vortex sheet roll-up computation.Proc.
Sixth SIAM Conference on Parallel Processing for Scientific
Computing, pages 52–56, 1993.

[5] R. Brent. A Fortran multiple precision arithmetic package.
ACM Trans. Math. Soft., 4:57–70, 1978.

[6] K. Briggs. Doubledouble floating point arith-
metic. http://www-epidem.plantsci.cam.ac.uk/˜kbriggs/
doubledouble.html, 1998.

[7] T. Dekker. A floating-point technique for extending the
available precision.Numerische Mathematik, 18:224–242,
1971.

[8] GMP. http://www.swox.com/gmp/.
[9] Y. Hida, X. S. Li, and D. H. Bailey. Quad-double arithmetic:

Algorithms, implementation, and application. Technical
Report LBNL-46996, Lawrence Berkeley National Labo-
ratory, Berkeley, CA 94720, October 2000. Available at
http://www.nersc.gov/˜dhbailey/mpdist/mpdist.html.

[10] D. E. Knuth. The Art of Computer Programming: Seminu-
merical Algorithms, volume 2. Addison Wesley, Reading,
Massachusetts, 1981.

[11] D. M. Priest. On Properties of Floating Point Arith-
metics: Numerical Stability and the Cost of Accurate Com-
putations. PhD thesis, University of California, Berke-
ley, November 1992. Available by anonymous FTP at
ftp.icsi.berkeley.edu/pub/theory/ priest-thesis.ps.Z.

[12] J. R. Shewchuk. Adaptive precision floating-point arithmetic
and fast robust geometric predicates.Discrete & Computa-
tional Geometry, 18(3):305–363, 1997.

